Resilient Cloud-based Replication with Low Latency

09/21/2020 ∙ by Michael Eischer, et al. ∙ 0

Existing approaches to tolerate Byzantine faults in geo-replicated environments require systems to execute complex agreement protocols over wide-area links and consequently are often associated with high response times. In this paper we address this problem with Spider, a resilient replication architecture for geo-distributed systems that leverages the availability characteristics of today's public-cloud infrastructures to minimize complexity and reduce latency. Spider models a system as a collection of loosely coupled replica groups whose members are hosted in different cloud-provided fault domains (i.e., availability zones) of the same geographic region. This structural organization makes it possible to achieve low response times by placing replica groups in close proximity to clients while still enabling the replicas of a group to interact over short-distance links. To handle the inter-group communication necessary for strong consistency Spider uses a reliable group-to-group message channel with first-in-first-out semantics and built-in flow control that significantly simplifies system design.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 10

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.