DeepAI AI Chat
Log In Sign Up

Residual-Based a Posteriori Error Estimator for a Multi-scale Cancer Invasion Model

by   Gopika P. B., et al.

In this work, we analyze the residual-based a posteriori error estimation of the multi-scale cancer invasion model, which is a system of three non-stationary reaction-diffusion equations. We present the numerical results of a study on a posteriori error control strategies for FEM approximations of the model. In this paper, we derive a residual type error estimator for the cancer invasion model and illustrate its practical performance on a series of computational tests in three-dimensional spaces. We show that the error estimator is reliable and efficient with respect to the small perturbation parameters in the model.


A Residual Based A Posteriori Error Estimators for AFC Schemes for Convection-Diffusion Equations

In this work, we propose a residual-based a posteriori error estimator f...

Stabilization-free HHO a posteriori error control

The known a posteriori error analysis of hybrid high-order methods (HHO)...

Residual-type a posteriori error analysis of HDG methods for Neumann boundary control problems

We study a posteriori error analysis of linear-quadratic boundary contro...

An Error Estimator for Electrically Coupled Liquid Crystals

This paper extends an a posteriori error estimator for the elastic, Fran...

Hanging nodes in the Context of Algebraic Stabilizations for Convection-Diffusion Equations

In this work, we propose an investigation of hanging nodes in the contex...