ReSeTOX: Re-learning attention weights for toxicity mitigation in machine translation
Our proposed method, ReSeTOX (REdo SEarch if TOXic), addresses the issue of Neural Machine Translation (NMT) generating translation outputs that contain toxic words not present in the input. The objective is to mitigate the introduction of toxic language without the need for re-training. In the case of identified added toxicity during the inference process, ReSeTOX dynamically adjusts the key-value self-attention weights and re-evaluates the beam search hypotheses. Experimental results demonstrate that ReSeTOX achieves a remarkable 57 quality of 99.5
READ FULL TEXT