Representation Learning for Medical Data

01/22/2020 ∙ by Karol Antczak, et al. ∙ 0

We propose a representation learning framework for medical diagnosis domain. It is based on heterogeneous network-based model of diagnostic data as well as modified metapath2vec algorithm for learning latent node representation. We compare the proposed algorithm with other representation learning methods in two practical case studies: symptom/disease classification and disease prediction. We observe a significant performance boost in these task resulting from learning representations of domain data in a form of heterogeneous network.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.