Representation Flow for Action Recognition

10/02/2018
by   AJ Piergiovanni, et al.
0

In this paper, we propose a convolutional layer inspired by optical flow algorithms to learn motion representations. Our representation flow layer is a fully-differentiable layer designed to optimally capture the `flow' of any representation channel within a convolutional neural network. Its parameters for iterative flow optimization are learned in an end-to-end fashion together with the other model parameters, maximizing the action recognition performance. Furthermore, we newly introduce the concept of learning `flow of flow' representations by stacking multiple representation flow layers. We conducted extensive experimental evaluations, confirming its advantages over previous recognition models using traditional optical flows in both computational speed and performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset