Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics Informed Neural Nets and strengthens their Approximation Power
We present a novel class of approximations for variational losses, being applicable for the training of physics-informed neural nets (PINNs). The loss formulation reflects classic Sobolev space theory for partial differential equations and their weak formulations. The loss computation rests on an extension of Gauss-Legendre cubatures, we term Sobolev cubatures, replacing automatic differentiation (A.D.). We prove the runtime complexity of training the resulting Soblev-PINNs (SC-PINNs) to be less than required by PINNs relying on A.D. On top of one-to-two order of magnitude speed-up the SC-PINNs are demonstrated to achieve closer solution approximations for prominent forward and inverse PDE problems than established PINNs achieve.
READ FULL TEXT