Reliable Simulation of Quantum Channels

12/08/2021
by   Ke Li, et al.
0

The Quantum Reverse Shannon Theorem has been a milestone in quantum information theory. It states that asymptotically reliable simulation of a quantum channel assisted by unlimited shared entanglement is possible, if and only if, the classical communication cost is greater than or equal to the channel's entanglement-assisted capacity. In this letter, we are concerned with the performance of reliable reverse Shannon simulation of quantum channels. Our main result is an in-depth characterization of the reliability function, that is, the optimal rate under which the performance of channel simulation asymptotically approaches the perfect. In particular, we have determined the exact formula of the reliability function when the classical communication cost is not too high – below a critical value. In the derivation, we have also obtained an achievability bound for the simulation of finite many copies of the channel, which is of realistic significance.

READ FULL TEXT VIEW PDF

Authors

page 1

page 2

page 3

page 4

09/22/2019

Entanglement-Assisted Capacity of Quantum Channels with Side Information

Entanglement-assisted communication over a random-parameter quantum chan...
01/07/2020

Permutation Enhances Classical Communication Assisted by Entangled States

We give a capacity formula for the classical communication over a noisy ...
11/11/2021

Reliability Function of Quantum Information Decoupling

Quantum information decoupling is an important quantum information proce...
07/31/2018

Entanglement cost and quantum channel simulation

This paper proposes a revised definition for the entanglement cost of a ...
01/09/2020

Capacity Approaching Coding for Low Noise Interactive Quantum Communication, Part I: Large Alphabets

We consider the problem of implementing two-party interactive quantum co...
12/14/2021

Moderate deviation expansion for fully quantum tasks

The moderate deviation regime is concerned with the finite block length ...
10/24/2018

Simultaneous transmission of classical and quantum information under channel uncertainty and jamming attacks

We derive universal codes for simultaneous transmission of classical mes...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

References

  • Bennett et al. (2014) C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter, IEEE Transactions on Information Theory 60, 2926 (2014).
  • Berta et al. (2011) M. Berta, M. Christandl, and R. Renner, Communications in Mathematical Physics 306, 579 (2011).
  • Bennett et al. (2002) C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, IEEE Transactions on Information Theory 48, 2637 (2002).
  • Devetak (2006) I. Devetak, Physical Review Letters 97, 140503 (2006).
  • Berta et al. (2013) M. Berta, F. G. Brandao, M. Christandl, and S. Wehner, IEEE Transactions on Information Theory 59, 6779 (2013).
  • Fang et al. (2020) K. Fang, X. Wang, M. Tomamichel, and M. Berta, IEEE Transactions on Information Theory 66, 2129 (2020).
  • Takagi et al. (2020) R. Takagi, K. Wang, and M. Hayashi, Physical Review Letters 124, 120502 (2020).
  • Cubitt et al. (2011) T. S. Cubitt, D. Leung, W. Matthews, and A. Winter, IEEE Transactions on Information Theory 57, 5509 (2011).
  • Duan and Winter (2015) R. Duan and A. Winter, IEEE Transactions on Information Theory 62, 891 (2015).
  • Faist et al. (2019) P. Faist, M. Berta, and F. Brandão, Physical Review Letters 122, 200601 (2019).
  • Faist et al. (2021) P. Faist, M. Berta, and F. G. Brandao, Communications in Mathematical Physics pp. 1–42 (2021).
  • Gour and Scandolo (2020) G. Gour and C. M. Scandolo, Physical Review Letters 125, 180505 (2020).
  • Regula and Takagi (2021) B. Regula and R. Takagi, Physical Review Letters 127, 060402 (2021).
  • Chitambar and Gour (2019) E. Chitambar and G. Gour, Reviews of Modern Physics 91, 025001 (2019).
  • Bennett et al. (1999) C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, Physical Review Letters 83, 3081 (1999).
  • Datta et al. (2012) N. Datta, M.-H. Hsieh, and M. M. Wilde, IEEE Transactions on Information Theory 59, 615 (2012).
  • Wilde et al. (2013) M. M. Wilde, N. Datta, M.-H. Hsieh, and A. Winter, IEEE Transactions on Information Theory 59, 6755 (2013).
  • Hsieh and Watanabe (2016) M.-H. Hsieh and S. Watanabe, IEEE Transactions on Information Theory 62, 6609 (2016).
  • Gallager (1968) R. Gallager, Information Theory and Reliable Communication (John Wiley & Sons, 1968).
  • Burnashev and Holevo (1998) M. Burnashev and A. S. Holevo, Problems of Information Transmission 34, 97 (1998).
  • Winter (1999) A. Winter, PhD Thesis, Universität Bielefeld (1999).
  • Holevo (2000) A. S. Holevo, IEEE Transactions on Information Theory 46, 2256 (2000).
  • Dalai (2013) M. Dalai, IEEE Transactions on Information Theory 59, 8027 (2013).
  • Hayashi (2015) M. Hayashi, Communications in Mathematical Physics 333, 335 (2015).
  • Dalai and Winter (2017) M. Dalai and A. Winter, IEEE Transactions on Information Theory 63, 5603 (2017).
  • Cheng et al. (2019) H.-C. Cheng, M.-H. Hsieh, and M. Tomamichel, IEEE Transactions on Information Theory 65, 2872 (2019).
  • Cheng et al. (2020) H.-C. Cheng, E. P. Hanson, N. Datta, and M.-H. Hsieh, IEEE Transactions on Information Theory 67, 902 (2020).
  • Dupuis (2021) F. Dupuis, arXiv preprint arXiv:2105.05342 (2021).
  • Koenig and Wehner (2009) R. Koenig and S. Wehner, Physical Review Letters 103, 070504 (2009).
  • Sharma and Warsi (2013) N. Sharma and N. A. Warsi, Physical Review Letters 110, 080501 (2013).
  • Wilde et al. (2014) M. M. Wilde, A. Winter, and D. Yang, Communications in Mathematical Physics 331, 593 (2014).
  • Gupta and Wilde (2015) M. K. Gupta and M. M. Wilde, Communications in Mathematical Physics 334, 867 (2015).
  • Cooney et al. (2016) T. Cooney, M. Mosonyi, and M. M. Wilde, Communications in Mathematical Physics 344, 797 (2016).
  • Mosonyi and Ogawa (2017) M. Mosonyi and T. Ogawa, Communications in Mathematical Physics 355, 373 (2017).
  • Li and Yao (2021a) K. Li and Y. Yao, arXiv preprint arXiv:2111.01075 (2021a).
  • Li and Yao (2021b) K. Li and Y. Yao, arXiv preprint arXiv:2111.06343 (2021b).
  • Müller-Lennert et al. (2013) M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, Journal of Mathematical Physics 54, 122203 (2013).
  • Christandl et al. (2009) M. Christandl, R. König, and R. Renner, Physical Review Letters 102, 020504 (2009).
  • Anshu et al. (2017) A. Anshu, V. K. Devabathini, and R. Jain, Physical Review Letters 119, 120506 (2017).
  • Abeyesinghe et al. (2009) A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, 2537 (2009).
  • Majenz et al. (2017) C. Majenz, M. Berta, F. Dupuis, R. Renner, and M. Christandl, Physical Review Letters 118, 080503 (2017).
  • Bennett et al. (1993) C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
  • Bennett and Wiesner (1992) C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).
  • Shannon (1956) C. E. Shannon, IRE Transactions on Information Theory 2, 8 (1956).
  • Lovasz (1979) L. Lovasz, IEEE Transactions on Information Theory 25, 1 (1979).
  • Sion (1958) M. Sion, Pacific Journal of Mathematics 8, 171 (1958).
  • Hayashi and Tomamichel (2016) M. Hayashi and M. Tomamichel, Journal of Mathematical Physics 57, 102201 (2016).
  • Frank and Lieb (2013) R. L. Frank and E. H. Lieb, Journal of Mathematical Physics 54, 122201 (2013).