Relevance Sensitive Non-Monotonic Inference on Belief Sequences
We present a method for relevance sensitive non-monotonic inference from belief sequences which incorporates insights pertaining to prioritized inference and relevance sensitive, inconsistency tolerant belief revision. Our model uses a finite, logically open sequence of propositional formulas as a representation for beliefs and defines a notion of inference from maxiconsistent subsets of formulas guided by two orderings: a temporal sequencing and an ordering based on relevance relations between the conclusion and formulas in the sequence. The relevance relations are ternary (using context as a parameter) as opposed to standard binary axiomatizations. The inference operation thus defined easily handles iterated revision by maintaining a revision history, blocks the derivation of inconsistent answers from a possibly inconsistent sequence and maintains the distinction between explicit and implicit beliefs. In doing so, it provides a finitely presented formalism and a plausible model of reasoning for automated agents.
READ FULL TEXT