DeepAI AI Chat
Log In Sign Up

Relative Survivable Network Design

by   Michael Dinitz, et al.

One of the most important and well-studied settings for network design is edge-connectivity requirements. This encompasses uniform demands such as the Minimum k-Edge-Connected Spanning Subgraph problem (k-ECSS), as well as nonuniform demands such as the Survivable Network Design problem. A weakness of these formulations, though, is that we are not able to ask for fault-tolerance larger than the connectivity. We introduce and study new variants of these problems under a notion of relative fault-tolerance. Informally, we require not that two nodes are connected if there are a bounded number of faults (as in the classical setting), but that two nodes are connected if there are a bounded number of faults and the two nodes are connected in the underlying graph post-faults. That is, the subgraph we build must "behave" identically to the underlying graph with respect to connectivity after bounded faults. We define and introduce these problems, and provide the first approximation algorithms: a (1+4/k)-approximation for the unweighted relative version of k-ECSS, a 2-approximation for the weighted relative version of k-ECSS, and a 27/4-approximation for the special case of Relative Survivable Network Design with only a single demand with a connectivity requirement of 3. To obtain these results, we introduce a number of technical ideas that may of independent interest. First, we give a generalization of Jain's iterative rounding analysis that works even when the cut-requirement function is not weakly supermodular, but instead satisfies a weaker definition we introduce and term local weak supermodularity. Second, we prove a structure theorem and design an approximation algorithm utilizing a new decomposition based on important separators, which are structures commonly used in fixed-parameter algorithms that have not commonly been used in approximation algorithms.


page 1

page 2

page 3

page 4


Fast Distributed Approximation for TAP and 2-Edge-Connectivity

The tree augmentation problem (TAP) is a fundamental network design prob...

Augmentation based Approximation Algorithms for Flexible Network Design

Adjiashvili introduced network design in a non-uniform fault model: the ...

Structure and substructure connectivity of balanced hypercubes

The connectivity of a network directly signifies its reliability and fau...

p-Edge/Vertex-Connected Vertex Cover: Parameterized and Approximation Algorithms

We introduce and study two natural generalizations of the Connected Vert...

FASHION: Fault-Aware Self-Healing Intelligent On-chip Network

To avoid packet loss and deadlock scenarios that arise due to faults or ...

Fully Adaptive Self-Stabilizing Transformer for LCL Problems

The first generic self-stabilizing transformer for local problems in a c...

Characterizing Demand Graphs for (Fixed-Parameter) Shallow-Light Steiner Network

We consider the Shallow-Light Steiner Network problem from a fixed-param...