Relationship extraction for knowledge graph creation from biomedical literature

01/05/2022
by   Nikola Milosevic, et al.
1

Biomedical research is growing in such an exponential pace that scientists, researchers and practitioners are no more able to cope with the amount of published literature in the domain. The knowledge presented in the literature needs to be systematized in such a ways that claims and hypothesis can be easily found, accessed and validated. Knowledge graphs can provide such framework for semantic knowledge representation from literature. However, in order to build knowledge graph, it is necessary to extract knowledge in form of relationships between biomedical entities and normalize both entities and relationship types. In this paper, we present and compare few rule-based and machine learning-based (Naive Bayes, Random Forests as examples of traditional machine learning methods and T5-based model as an example of modern deep learning) methods for scalable relationship extraction from biomedical literature for the integration into the knowledge graphs. We examine how resilient are these various methods to unbalanced and fairly small datasets, showing that T5 model handles well both small datasets, due to its pre-training on large C4 dataset as well as unbalanced data. The best performing model was T5 model fine-tuned on balanced data, with reported F1-score of 0.88.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset