Relational dynamic memory networks
Working memory is an essential component of reasoning -- the capacity to answer a new question by manipulating acquired knowledge. Current memory-augmented neural networks offer a differentiable method to realize limited reasoning with support of a working memory module. Memory modules are often implemented as a set of memory slots without explicit relational exchange of content. This does not naturally match multi-relational domains in which data is structured. We design a new model dubbed Relational Dynamic Memory Network (RDMN) to fill this gap. The memory can have a single or multiple components, each of which realizes a multi-relational graph of memory slots. The memory is dynamically updated in the reasoning process controlled by the central controller. We evaluate the capability of RDMN on several important application domains: software vulnerability, molecular bioactivity and chemical reaction. Results demonstrate the efficacy of the proposed model.
READ FULL TEXT