Reinforcement Learning via Reasoning from Demonstration

04/12/2020
by   Lisa Torrey, et al.
0

Demonstration is an appealing way for humans to provide assistance to reinforcement-learning agents. Most approaches in this area view demonstrations primarily as sources of behavioral bias. But in sparse-reward tasks, humans seem to treat demonstrations more as sources of causal knowledge. This paper proposes a framework for agents that benefit from demonstration in this human-inspired way. In this framework, agents develop causal models through observation, and reason from this knowledge to decompose tasks for effective reinforcement learning. Experimental results show that a basic implementation of Reasoning from Demonstration (RfD) is effective in a range of sparse-reward tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro