Reinforcement Learning of Speech Recognition System Based on Policy Gradient and Hypothesis Selection

11/10/2017
by   Taku Kato, et al.
0

Speech recognition systems have achieved high recognition performance for several tasks. However, the performance of such systems is dependent on the tremendously costly development work of preparing vast amounts of task-matched transcribed speech data for supervised training. The key problem here is the cost of transcribing speech data. The cost is repeatedly required to support new languages and new tasks. Assuming broad network services for transcribing speech data for many users, a system would become more self-sufficient and more useful if it possessed the ability to learn from very light feedback from the users without annoying them. In this paper, we propose a general reinforcement learning framework for speech recognition systems based on the policy gradient method. As a particular instance of the framework, we also propose a hypothesis selection-based reinforcement learning method. The proposed framework provides a new view for several existing training and adaptation methods. The experimental results show that the proposed method improves the recognition performance compared to unsupervised adaptation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset