Reinforcement Learning of Spatio-Temporal Point Processes
Spatio-temporal event data is ubiquitous in various applications, such as social media, crime events, and electronic health records. Spatio-temporal point processes offer a versatile framework for modeling such event data, as it can jointly capture spatial and temporal dependency. A key question is to estimate the generative model for such point processes, which enables the subsequent machine learning tasks. Existing works mainly focus on parametric models for the conditional intensity function, such as the widely used multi-dimensional Hawkes processes. However, parametric models tend to lack flexibility in tackling real data. On the other hand, non-parametric for spatio-temporal point processes tend to be less interpretable. We introduce a novel and flexible semi-parametric spatial-temporal point processes model, by combining spatial statistical models based on heterogeneous Gaussian mixture diffusion kernels, whose parameters are represented using neural networks. We learn the model using a reinforcement learning framework, where the reward function is defined via the maximum mean discrepancy (MMD) of the empirical processes generated by the model and the real data. Experiments based on real data show the superior performance of our method relative to the state-of-the-art.
READ FULL TEXT