Reinforcement Learning for Few-Shot Text Generation Adaptation

11/22/2021
by   Cheng Pengsen, et al.
0

Controlling the generative model to adapt a new domain with limited samples is a difficult challenge and it is receiving increasing attention. Recently, few-shot learning has shown promising process in domain adaptation. However, the texts generated by few-shot learning are typically devoid of linguistic diversity. To address this shortcoming, we frame the adaptation of text generation systems as a reinforcement learning problem and provide a new approach to make text generation models easily adaptable to target domain with the minimal amount of in-domain data. Experimental results on five target domains in two few-shot configurations demonstrate that our method significantly outperforms domain adaptation when very few in-domain samples are available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro