Reinforced Edge Selection using Deep Learning for Robust Surveillance in Unmanned Aerial Vehicles
In this paper, we propose a novel deep Q-network (DQN)-based edge selection algorithm designed specifically for real-time surveillance in unmanned aerial vehicle (UAV) networks. The proposed algorithm is designed under the consideration of delay, energy, and overflow as optimizations to ensure real-time properties while striking a balance for other environment-related parameters. The merit of the proposed algorithm is verified via simulation-based performance evaluation.
READ FULL TEXT