Regularity and sparse approximation of the recursive first moment equations for the lognormal Darcy problem

05/14/2020 ∙ by Francesca Bonizzoni, et al. ∙ 0

We study the Darcy boundary value problem with log-normal permeability field. We adopt a perturbation approach, expanding the solution in Taylor series around the nominal value of the coefficient, and approximating the expected value of the stochastic solution of the PDE by the expected value of its Taylor polynomial. The recursive deterministic equation satisfied by the expected value of the Taylor polynomial (first moment equation) is formally derived. Well-posedness and regularity results for the recursion are proved to hold in Sobolev space-valued Hölder spaces with mixed regularity. The recursive first moment equation is then discretized by means of a sparse approximation technique, and the convergence rates are derived.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.