Regular Polygon Surfaces
A regular polygon surface M is a surface graph (Σ, Γ) together with a continuous map ψ from Σ into Euclidean 3-space which maps faces to regular Euclidean polygons. When Σ is homeomorphic to the sphere and the degree of every face of Γ is five, we prove that M can be realized as the boundary of a union of dodecahedra glued together along common facets. Under the same assumptions but when the faces of Γ have degree four or eight, we prove that M can be realized as the boundary of a union of cubes and octagonal prisms glued together along common facets. We exhibit counterexamples showing the failure of both theorems for higher genus surfaces.
READ FULL TEXT