Regular Polygon Surfaces

04/15/2018
by   Ian M. Alevy, et al.
0

A regular polygon surface M is a surface graph (Σ, Γ) together with a continuous map ψ from Σ into Euclidean 3-space which maps faces to regular Euclidean polygons. When Σ is homeomorphic to the sphere and the degree of every face of Γ is five, we prove that M can be realized as the boundary of a union of dodecahedra glued together along common facets. Under the same assumptions but when the faces of Γ have degree four or eight, we prove that M can be realized as the boundary of a union of cubes and octagonal prisms glued together along common facets. We exhibit counterexamples showing the failure of both theorems for higher genus surfaces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro