Regular Expressions for Fast-response COVID-19 Text Classification
Text classifiers are at the core of many NLP applications and use a variety of algorithmic approaches and software. This paper describes how Facebook determines if a given piece of text - anything from a hashtag to a post - belongs to a narrow topic such as COVID-19. To fully define a topic and evaluate classifier performance we employ human-guided iterations of keyword discovery, but do not require labeled data. For COVID-19, we build two sets of regular expressions: (1) for 66 languages, with 99 (2) for the 11 most common languages, with precision >90 Regular expressions enable low-latency queries from multiple platforms. Response to challenges like COVID-19 is fast and so are revisions. Comparisons to a DNN classifier show explainable results, higher precision and recall, and less overfitting. Our learnings can be applied to other narrow-topic classifiers.
READ FULL TEXT