Regret Bounds for Noise-Free Bayesian Optimization

02/12/2020
by   Sattar Vakili, et al.
0

Bayesian optimisation is a powerful method for non-convex black-box optimization in low data regimes. However, the question of establishing tight upper bounds for common algorithms in the noiseless setting remains a largely open question. In this paper, we establish new and tightest bounds for two algorithms, namely GP-UCB and Thompson sampling, under the assumption that the objective function is smooth in terms of having a bounded norm in a Matérn RKHS. Importantly, unlike several related works, we do not consider perfect knowledge of the kernel of the Gaussian process emulator used within the Bayesian optimization loop. This allows us to provide results for practical algorithms that sequentially estimate the Gaussian process kernel parameters from the available data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset