Regression Trees and Ensembles for Cumulative Incidence Functions

06/24/2021 ∙ by Youngjoo Cho, et al. ∙ 0

The use of cumulative incidence functions for characterizing the risk of one type of event in the presence of others has become increasingly popular over the past decade. The problems of modeling, estimation and inference have been treated using parametric, nonparametric and semi-parametric methods. Efforts to develop suitable extensions of machine learning methods, such as regression trees and related ensemble methods, have begun comparatively recently. In this paper, we propose a novel approach to estimating cumulative incidence curves in a competing risks setting using regression trees and associated ensemble estimators. The proposed methods employ augmented estimators of the Brier score risk as the primary basis for building and pruning trees, and lead to methods that are easily implemented using existing R packages. Data from the Radiation Therapy Oncology Group (trial 9410) is used to illustrate these new methods.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.