Regions In a Linked Dataset For Change Detection

05/19/2019
by   Anuj Singh, et al.
0

Linked Datasets (LDs) are constantly evolving and the applications using a Linked Dataset (LD) may face several issues such as outdated data or broken interlinks due to evolution of the dataset. To overcome these issues, the detection of changes in LDs during their evolution has proven crucial. As LDs evolve frequently, the change detection during the evolution should also be done at frequent intervals. However, due to limitation of available computational resources such as capacity to fetch data from LD and time to detect changes, the frequent change detection may not be possible with existing change detection techniques. This research proposes to explore the notion of prioritization of regions (subsets) in LDs for change detection with the aim of achieving optimal accuracy and efficient use of available computational resources. This will facilitate the detection of changes in an evolving LD at frequent intervals and will allow the applications to update their data closest to real-time data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro