Reducing Noise from Competing Neighbours: Word Retrieval with Lateral Inhibition in Multilink
Multilink is a computational model for word retrieval in monolingual and multilingual individuals under different task circumstances (Dijkstra et al., 2018). In the present study, we added lateral inhibition to Multilink's lexical network. Parameters were fit on the basis of reaction times from the English, British, and Dutch Lexicon Projects. We found a maximum correlation of 0.643 (N=1,205) on these data sets as a whole. Furthermore, the simulations themselves became faster as a result of adding lateral inhibition. We tested the fitted model to stimuli from a neighbourhood study (Mulder et al., 2018). Lateral inhibition was found to improve Multilink's correlations for this study, yielding an overall correlation of 0.67. Next, we explored the role of lateral inhibition as part of the model's task/decision system by running simulations on data from two studies concerning interlingual homographs (Vanlangendonck et al., in press; Goertz, 2018). We found that, while lateral inhibition plays a substantial part in the word selection process, this alone is not enough to result in a correct response selection. To solve this problem, we added a new task component to Multilink, especially designed to account for the translation process of interlingual homographs, cognates, and language-specific control words. The subsequent simulation results showed patterns remarkably similar to those in the Goertz study. The isomorphicity of the simulated data to the empirical data was further attested by an overall correlation of 0.538 (N=254) between reaction times and simulated model cycle times, as well as a condition pattern correlation of 0.853 (N=8). We conclude that Multilink yields an excellent fit to empirical data, particularly when a task-specific setting of the inhibition parameters is allowed.
READ FULL TEXT