Reduced Space and Faster Convergence in Imperfect-Information Games via Regret-Based Pruning

09/12/2016
by   Noam Brown, et al.
0

Counterfactual Regret Minimization (CFR) is the most popular iterative algorithm for solving zero-sum imperfect-information games. Regret-Based Pruning (RBP) is an improvement that allows poorly-performing actions to be temporarily pruned, thus speeding up CFR. We introduce Total RBP, a new form of RBP that reduces the space requirements of CFR as actions are pruned. We prove that in zero-sum games it asymptotically prunes any action that is not part of a best response to some Nash equilibrium. This leads to provably faster convergence and lower space requirements. Experiments show that Total RBP results in an order of magnitude reduction in space, and the reduction factor increases with game size.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset