Reduced-Rank Hidden Markov Models

10/06/2009
by   Sajid M. Siddiqi, et al.
0

We introduce the Reduced-Rank Hidden Markov Model (RR-HMM), a generalization of HMMs that can model smooth state evolution as in Linear Dynamical Systems (LDSs) as well as non-log-concave predictive distributions as in continuous-observation HMMs. RR-HMMs assume an m-dimensional latent state and n discrete observations, with a transition matrix of rank k <= m. This implies the dynamics evolve in a k-dimensional subspace, while the shape of the set of predictive distributions is determined by m. Latent state belief is represented with a k-dimensional state vector and inference is carried out entirely in R^k, making RR-HMMs as computationally efficient as k-state HMMs yet more expressive. To learn RR-HMMs, we relax the assumptions of a recently proposed spectral learning algorithm for HMMs (Hsu, Kakade and Zhang 2009) and apply it to learn k-dimensional observable representations of rank-k RR-HMMs. The algorithm is consistent and free of local optima, and we extend its performance guarantees to cover the RR-HMM case. We show how this algorithm can be used in conjunction with a kernel density estimator to efficiently model high-dimensional multivariate continuous data. We also relax the assumption that single observations are sufficient to disambiguate state, and extend the algorithm accordingly. Experiments on synthetic data and a toy video, as well as on a difficult robot vision modeling problem, yield accurate models that compare favorably with standard alternatives in simulation quality and prediction capability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset