Reduced-Memory Methods for Linear Discontinuous Discretization of the Time-Dependent Boltzmann Transport Equation
In this paper, new implicit methods with reduced memory are developed for solving the time-dependent Boltzmann transport equation (BTE). One-group transport problems in 1D slab geometry are considered. The reduced-memory methods are formulated for the BTE discretized with the linear-discontinuous scheme in space and backward-Euler time integration method. Numerical results are presented to demonstrate performance of the proposed numerical methods.
READ FULL TEXT