Recycling cardiogenic artifacts in impedance pneumography
Purpose: We want to capture as much information as possible from biomedical sensors when only a few channels are available. Methods: We apply a nonlinear time-frequency analysis technique, the de-shape synchrosqueezing transform, to adaptively isolate the high- and low-frequency components of a single-channel signal. We demonstrate this technique's effectiveness by deriving hemodynamic information from the cardiogenic artifact in an impedance pneumography (IP). Results: The instantaneous heart rate is extracted, and the cardiac and respiratory signals are reconstructed. Conclusions: The de-shape synchrosqueezing transform is suitable for generating useful information from the cardiogenic artifact in a single-channel IP. We propose that the usefulness of the de-shape synchrosqueezing transform as a recycling tool extends to other biomedical sensors exhibiting cardiogenic artifacts or to any individual sensor which simultaneously monitors two or more distinct oscillatory phenomenae.
READ FULL TEXT