Recurrent Multigraph Integrator Network for Predicting the Evolution of Population-Driven Brain Connectivity Templates

10/06/2021
by   Oytun Demirbilek, et al.
0

Learning how to estimate a connectional brain template(CBT) from a population of brain multigraphs, where each graph (e.g., functional) quantifies a particular relationship between pairs of brain regions of interest (ROIs), allows to pin down the unique connectivity patterns shared across individuals. Specifically, a CBT is viewed as an integral representation of a set of highly heterogeneous graphs and ideally meeting the centeredness (i.e., minimum distance to all graphs in the population) and discriminativeness (i.e., distinguishes the healthy from the disordered population) criteria. So far, existing works have been limited to only integrating and fusing a population of brain multigraphs acquired at a single timepoint. In this paper, we unprecedentedly tackle the question: Given a baseline multigraph population, can we learn how to integrate and forecast its CBT representations at follow-up timepoints? Addressing such question is of paramount in predicting common alternations across healthy and disordered populations. To fill this gap, we propose Recurrent Multigraph Integrator Network (ReMI-Net), the first graph recurrent neural network which infers the baseline CBT of an input population t1 and predicts its longitudinal evolution over time (ti > t1). Our ReMI-Net is composed of recurrent neural blocks with graph convolutional layers using a cross-node message passing to first learn hidden-states embeddings of each CBT node (i.e., brain region of interest) and then predict its evolution at the consecutive timepoint. Moreover, we design a novel time-dependent loss to regularize the CBT evolution trajectory over time and further introduce a cyclic recursion and learnable normalization layer to generate well-centered CBTs from time-dependent hidden-state embeddings. Finally, we derive the CBT adjacency matrix from the learned hidden state graph representation.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
09/28/2020

Deep EvoGraphNet Architecture For Time-Dependent Brain Graph Data Synthesis From a Single Timepoint

Learning how to predict the brain connectome (i.e. graph) development an...
research
09/23/2020

Foreseeing Brain Graph Evolution Over Time Using Deep Adversarial Network Normalizer

Foreseeing the brain evolution as a complex highly inter-connected syste...
research
12/28/2020

Deep Graph Normalizer: A Geometric Deep Learning Approach for Estimating Connectional Brain Templates

A connectional brain template (CBT) is a normalized graph-based represen...
research
04/05/2022

Comparative Survey of Multigraph Integration Methods for Holistic Brain Connectivity Mapping

One of the greatest scientific challenges in network neuroscience is to ...
research
09/24/2020

Multi-Scale Profiling of Brain Multigraphs by Eigen-based Cross-Diffusion and Heat Tracing for Brain State Profiling

The individual brain can be viewed as a highly-complex multigraph (i.e. ...
research
09/13/2022

Predicting Brain Multigraph Population From a Single Graph Template for Boosting One-Shot Classification

A central challenge in training one-shot learning models is the limited ...
research
09/23/2020

Residual Embedding Similarity-Based Network Selection for Predicting Brain Network Evolution Trajectory from a Single Observation

While existing predictive frameworks are able to handle Euclidean struct...

Please sign up or login with your details

Forgot password? Click here to reset