Recurrent Graph Convolutional Networks for Spatiotemporal Prediction of Snow Accumulation Using Airborne Radar
The accurate prediction and estimation of annual snow accumulation has grown in importance as we deal with the effects of climate change and the increase of global atmospheric temperatures. Airborne radar sensors, such as the Snow Radar, are able to measure accumulation rate patterns at a large-scale and monitor the effects of ongoing climate change on Greenland's precipitation and run-off. The Snow Radar's use of an ultra-wide bandwidth enables a fine vertical resolution that helps in capturing internal ice layers. Given the amount of snow accumulation in previous years using the radar data, in this paper, we propose a machine learning model based on recurrent graph convolutional networks to predict the snow accumulation in recent consecutive years at a certain location. We found that the model performs better and with more consistency than equivalent nongeometric and nontemporal models.
READ FULL TEXT