DeepAI AI Chat
Log In Sign Up

Recurrent Exposure Generation for Low-Light Face Detection

by   Jinxiu Liang, et al.
South China University of Technology International Student Union
Stony Brook University
Peking University

Face detection from low-light images is challenging due to limited photos and inevitable noise, which, to make the task even harder, are often spatially unevenly distributed. A natural solution is to borrow the idea from multi-exposure, which captures multiple shots to obtain well-exposed images under challenging conditions. High-quality implementation/approximation of multi-exposure from a single image is however nontrivial. Fortunately, as shown in this paper, neither is such high-quality necessary since our task is face detection rather than image enhancement. Specifically, we propose a novel Recurrent Exposure Generation (REG) module and couple it seamlessly with a Multi-Exposure Detection (MED) module, and thus significantly improve face detection performance by effectively inhibiting non-uniform illumination and noise issues. REG produces progressively and efficiently intermediate images corresponding to various exposure settings, and such pseudo-exposures are then fused by MED to detect faces across different lighting conditions. The proposed method, named REGDet, is the first `detection-with-enhancement' framework for low-light face detection. It not only encourages rich interaction and feature fusion across different illumination levels, but also enables effective end-to-end learning of the REG component to be better tailored for face detection. Moreover, as clearly shown in our experiments, REG can be flexibly coupled with different face detectors without extra low/normal-light image pairs for training. We tested REGDet on the DARK FACE low-light face benchmark with thorough ablation study, where REGDet outperforms previous state-of-the-arts by a significant margin, with only negligible extra parameters.


page 1

page 2

page 4

page 6

page 8

page 10


Fast Enhancement for Non-Uniform Illumination Images using Light-weight CNNs

This paper proposes a new light-weight convolutional neural network (5k ...

A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement

Low-light images are not conducive to human observation and computer vis...

Learning an Adaptive Model for Extreme Low-light Raw Image Processing

Low-light images suffer from severe noise and low illumination. Current ...

Learning a Single Convolutional Layer Model for Low Light Image Enhancement

Low-light image enhancement (LLIE) aims to improve the illuminance of im...

ExposureDiffusion: Learning to Expose for Low-light Image Enhancement

Previous raw image-based low-light image enhancement methods predominant...

Sparse Photometric 3D Face Reconstruction Guided by Morphable Models

We present a novel 3D face reconstruction technique that leverages spars...