Recurrent Deep Stacking Networks for Speech Recognition

12/14/2016
by   Peidong Wang, et al.
0

This paper presented our work on applying Recurrent Deep Stacking Networks (RDSNs) to Robust Automatic Speech Recognition (ASR) tasks. In the paper, we also proposed a more efficient yet comparable substitute to RDSN, Bi- Pass Stacking Network (BPSN). The main idea of these two models is to add phoneme-level information into acoustic models, transforming an acoustic model to the combination of an acoustic model and a phoneme-level N-gram model. Experiments showed that RDSN and BPsn can substantially improve the performances over conventional DNNs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset