Recovery of Sobolev functions restricted to iid sampling
We study L_q-approximation and integration for functions from the Sobolev space W^s_p(Ω) and compare optimal randomized (Monte Carlo) algorithms with algorithms that can only use iid sample points, uniformly distributed on the domain. The main result is that we obtain the same optimal rate of convergence if we restrict to iid sampling, a common assumption in learning and uncertainty quantification. The only exception is when p=q=∞, where a logarithmic loss cannot be avoided.
READ FULL TEXT