Recovery of a mixture of Gaussians by sum-of-norms clustering

02/19/2019
by   Tao Jiang, et al.
0

Sum-of-norms clustering is a method for assigning n points in R^d to K clusters, 1< K< n, using convex optimization. Recently, Panahi et al. proved that sum-of-norms clustering is guaranteed to recover a mixture of Gaussians under the restriction that the number of samples is not too large. The purpose of this note is to lift this restriction, i.e., show that sum-of-norms clustering with equal weights can recover a mixture of Gaussians even as the number of samples tends to infinity. Our proof relies on an interesting characterization of clusters computed by sum-of-norms clustering that was developed inside a proof of the agglomeration conjecture by Chiquet et al. Because we believe this theorem has independent interest, we restate and reprove the Chiquet et al. result herein.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset