Reconstruction of Complex-Valued Fractional Brownian Motion Fields Based on Compressive Sampling and Its Application to PSF Interpolation in Weak Lensing Survey
A new reconstruction method of complex-valued fractional Brownian motion (CV-fBm) field based on Compressive Sampling (CS) is proposed. The decay property of Fourier coefficients magnitude of the fBm signals/ fields indicates that fBms are compressible. Therefore, a few numbers of samples will be sufficient for a CS based method to reconstruct the full field. The effectiveness of the proposed method is showed by simulating, random sampling, and reconstructing CV-fBm fields. Performance evaluation shows advantages of the proposed method over boxcar filtering and thin plate methods. It is also found that the reconstruction performance depends on both of the fBm's Hurst parameter and the number of samples, which in fact is consistent with the CS reconstruction theory. In contrast to other fBm or fractal interpolation methods, the proposed CS based method does not require the knowledge of fractal parameters in the reconstruction process; the inherent sparsity is just sufficient for the CS to do the reconstruction. Potential applicability of the proposed method in weak gravitational lensing survey, particularly for interpolating non-smooth PSF (Point Spread Function) distribution representing distortion by a turbulent field is also discussed.
READ FULL TEXT