Recommendations and User Agency: The Reachability of Collaboratively-Filtered Information
Recommender systems often rely on models which are trained to maximize accuracy in predicting user preferences. When the systems are deployed, these models determine the availability of content and information to different users. The gap between these objectives gives rise to a potential for unintended consequences, contributing to phenomena such as filter bubbles and polarization. In this work, we consider directly the information availability problem through the lens of user recourse. Using ideas of reachability, we propose a computationally efficient audit for top-N linear recommender models. Furthermore, we describe the relationship between model complexity and the effort necessary for users to exert control over their recommendations. We use this insight to provide a novel perspective on the user cold-start problem. Finally, we demonstrate these concepts with an empirical investigation of a state-of-the-art model trained on a widely used movie ratings dataset.
READ FULL TEXT