Reasoning About the Transfer of Control

01/16/2014
by   Wiebe van der Hoek, et al.
0

We present DCL-PC: a logic for reasoning about how the abilities of agents and coalitions of agents are altered by transferring control from one agent to another. The logical foundation of DCL-PC is CL-PC, a logic for reasoning about cooperation in which the abilities of agents and coalitions of agents stem from a distribution of atomic Boolean variables to individual agents -- the choices available to a coalition correspond to assignments to the variables the coalition controls. The basic modal constructs of DCL-PC are of the form coalition C can cooperate to bring about phi. DCL-PC extends CL-PC with dynamic logic modalities in which atomic programs are of the form agent i gives control of variable p to agent j; as usual in dynamic logic, these atomic programs may be combined using sequence, iteration, choice, and test operators to form complex programs. By combining such dynamic transfer programs with cooperation modalities, it becomes possible to reason about how the power of agents and coalitions is affected by the transfer of control. We give two alternative semantics for the logic: a direct semantics, in which we capture the distributions of Boolean variables to agents; and a more conventional Kripke semantics. We prove that these semantics are equivalent, and then present an axiomatization for the logic. We investigate the computational complexity of model checking and satisfiability for DCL-PC, and show that both problems are PSPACE-complete (and hence no worse than the underlying logic CL-PC). Finally, we investigate the characterisation of control in DCL-PC. We distinguish between first-order control -- the ability of an agent or coalition to control some state of affairs through the assignment of values to the variables under the control of the agent or coalition -- and second-order control -- the ability of an agent to exert control over the control that other agents have by transferring variables to other agents. We give a logical characterisation of second-order control.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
02/06/2017

Exploring the bidimensional space: A dynamic logic point of view

We present a family of logics for reasoning about agents' positions and ...
research
04/13/2018

On the Complexity of Team Logic and its Two-Variable Fragment

We study the logic FO( ), the extension of first-order logic with team s...
research
06/28/2022

Program Semantics and a Verification Technique for Knowledge-Based Multi-Agent Systems

We give a relational and a weakest precondition semantics for "knowledge...
research
04/03/2023

Uncertainty-Based Knowing How Logic

We introduce a novel semantics for a multi-agent epistemic operator of k...
research
12/31/2018

A modal aleatoric calculus for probabilistic reasoning: extended version

We consider multi-agent systems where agents actions and beliefs are det...
research
03/17/2022

Neighbourhood semantics and axioms for strategic fragment of classical stit logic

STIT (sees to it that) semantics is one of the most prominent tools in m...
research
04/30/2021

Tracking and managing deemed abilities

Information about the powers and abilities of acting entities is used to...

Please sign up or login with your details

Forgot password? Click here to reset