Real-World Deployment and Evaluation of Kwame for Science, An AI Teaching Assistant for Science Education in West Africa

02/21/2023
by   George Boateng, et al.
0

Africa has a high student-to-teacher ratio which limits students' access to teachers for learning support such as educational question answering. In this work, we extended Kwame, our previous AI teaching assistant for coding education, adapted it for science education, and deployed it as a web app. Kwame for Science provides passages from well-curated knowledge sources and related past national exam questions as answers to questions from students based on the Integrated Science subject of the West African Senior Secondary Certificate Examination (WASSCE). Furthermore, students can view past national exam questions along with their answers and filter by year, question type (objectives, theory, and practicals), and topics that were automatically categorized by a topic detection model which we developed (91 average recall). We deployed Kwame for Science in the real world over 8 months and had 750 users across 32 countries (15 in Africa) and 1.5K questions asked. Our evaluation showed an 87.2 Kwame for Science has a high chance of giving at least one useful answer among the 3 displayed. We categorized the reasons the model incorrectly answered questions to provide insights for future improvements. We also share challenges and lessons with the development, deployment, and human-computer interaction component of such a tool to enable other researchers to deploy similar tools. With a first-of-its-kind tool within the African context, Kwame for Science has the potential to enable the delivery of scalable, cost-effective, and quality remote education to millions of people across Africa.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset