Real-Word Error Correction with Trigrams: Correcting Multiple Errors in a Sentence

Spelling correction is a fundamental task in Text Mining. In this study, we assess the real-word error correction model proposed by Mays, Damerau and Mercer and describe several drawbacks of the model. We propose a new variation which focuses on detecting and correcting multiple real-word errors in a sentence, by manipulating a Probabilistic Context-Free Grammar (PCFG) to discriminate between items in the search space. We test our approach on the Wall Street Journal corpus and show that it outperforms Hirst and Budanitsky's WordNet-based method and Wilcox-O'Hearn, Hirst, and Budanitsky's fixed windows size method.-O'Hearn, Hirst, and Budanitsky's fixed windows size method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro