Log In Sign Up

Real-Time Polyp Detection, Localisation and Segmentation in Colonoscopy Using Deep Learning

by   Debesh Jha, et al.

Computer-aided detection, localisation, and segmentation methods can help improve colonoscopy procedures. Even though many methods have been built to tackle automatic detection and segmentation of polyps, benchmarking of state-of-the-art methods still remains an open problem. This is due to the increasing number of researched computer-vision methods that can be applied to polyp datasets. Benchmarking of novel methods can provide a direction to the development of automated polyp detection and segmentation tasks. Furthermore, it ensures that the produced results in the community are reproducible and provide a fair comparison of developed methods. In this paper, we benchmark several recent state-of-the-art methods using Kvasir-SEG, an open-access dataset of colonoscopy images, for polyp detection, localisation, and segmentation evaluating both method accuracy and speed. Whilst, most methods in literature have competitive performance over accuracy, we show that YOLOv4 with a Darknet53 backbone and cross-stage-partial connections achieved a better trade-off between an average precision of 0.8513 and mean IoU of 0.8025, and the fastest speed of 48 frames per second for the detection and localisation task. Likewise, UNet with a ResNet34 backbone achieved the highest dice coefficient of 0.8757 and the best average speed of 35 frames per second for the segmentation task. Our comprehensive comparison with various state-of-the-art methods reveal the importance of benchmarking the deep learning methods for automated real-time polyp identification and delineations that can potentially transform current clinical practices and minimise miss-detection rates.


page 1

page 2

page 3

page 5

page 6

page 9

page 10

page 11


BlazeNeo: Blazing fast polyp segmentation and neoplasm detection

In recent years, computer-aided automatic polyp segmentation and neoplas...

RUPNet: Residual upsampling network for real-time polyp segmentation

Colorectal cancer is among the most prevalent cause of cancer-related mo...

DilatedSegNet: A Deep Dilated Segmentation Network for Polyp Segmentation

Colorectal cancer (CRC) is the second leading cause of cancer-related de...

Fully automatic computer-aided mass detection and segmentation via pseudo-color mammograms and Mask R-CNN

Purpose: To propose pseudo-color mammograms that enhance mammographic ma...

Segmentation of kidney stones in endoscopic video feeds

Image segmentation has been increasingly applied in medical settings as ...