Real-time pedestrian recognition on low computational resources
Pedestrian recognition has successfully been applied to security, autonomous cars, Aerial photographs. For most applications, pedestrian recognition on small mobile devices is important. However, the limitations of the computing hardware make this a challenging task. In this work, we investigate real-time pedestrian recognition on small physical-size computers with low computational resources for faster speed. This paper presents three methods that work on the small physical size CPUs system. First, we improved the Local Binary Pattern (LBP) features and Adaboost classifier. Second, we optimized the Histogram of Oriented Gradients (HOG) and Support Vector Machine. Third, We implemented fast Convolutional Neural Networks (CNNs). The results demonstrate that the three methods achieved real-time pedestrian recognition at an accuracy of more than 95 platform with a 1.8 GHz Intel i5 CPU. Our methods can be easily applied to small mobile devices with high compatibility and generality.
READ FULL TEXT