DeepAI AI Chat
Log In Sign Up

Reachability Embeddings: Scalable Self-Supervised Representation Learning from Markovian Trajectories for Geospatial Computer Vision

by   Swetava Ganguli, et al.

Self-supervised representation learning techniques utilize large datasets without semantic annotations to learn meaningful, universal features that can be conveniently transferred to solve a wide variety of downstream supervised tasks. In this paper, we propose a self-supervised method for learning representations of geographic locations from unlabeled GPS trajectories to solve downstream geospatial computer vision tasks. Tiles resulting from a raster representation of the earth's surface are modeled as nodes on a graph or pixels of an image. GPS trajectories are modeled as allowed Markovian paths on these nodes. A scalable and distributed algorithm is presented to compute image-like representations, called reachability summaries, of the spatial connectivity patterns between tiles and their neighbors implied by the observed Markovian paths. A convolutional, contractive autoencoder is trained to learn compressed representations, called reachability embeddings, of reachability summaries for every tile. Reachability embeddings serve as task-agnostic, feature representations of geographic locations. Using reachability embeddings as pixel representations for five different downstream geospatial tasks, cast as supervised semantic segmentation problems, we quantitatively demonstrate that reachability embeddings are semantically meaningful representations and result in 4-23 as measured using area under the precision-recall curve (AUPRC) metric, when compared to baseline models that use pixel representations that do not account for the spatial connectivity between tiles. Reachability embeddings transform sequential, spatiotemporal mobility data into semantically meaningful image-like representations that can be combined with other sources of imagery and are designed to facilitate multimodal learning in geospatial computer vision.


page 1

page 2

page 3

page 4


Self-Supervised Temporal Analysis of Spatiotemporal Data

There exists a correlation between geospatial activity temporal patterns...

Simplicial Embeddings in Self-Supervised Learning and Downstream Classification

We introduce Simplicial Embeddings (SEMs) as a way to constrain the enco...

Self-Supervised Leaf Segmentation under Complex Lighting Conditions

As an essential prerequisite task in image-based plant phenotyping, leaf...

STEPs: Self-Supervised Key Step Extraction from Unlabeled Procedural Videos

We address the problem of extracting key steps from unlabeled procedural...

Traj2User: exploiting embeddings for computing similarity of users mobile behavior

Semantic trajectories are high level representations of user movements w...

Reachability and Top-k Reachability Queries with Transfer Decay

The prevalence of location tracking systems has resulted in large volume...