Re-determinizing Information Set Monte Carlo Tree Search in Hanabi

02/16/2019
by   James Goodman, et al.
0

This technical report documents the winner of the Computational Intelligence in Games(CIG) 2018 Hanabi competition. We introduce Re-determinizing IS-MCTS, a novel extension of Information Set Monte Carlo Tree Search (IS-MCTS) IS-MCTS that prevents a leakage of hidden information into opponent models that can occur in IS-MCTS, and is particularly severe in Hanabi. Re-determinizing IS-MCTS scores higher in Hanabi for 2-4 players than previously published work. Given the 40ms competition time limit per move we use a learned evaluation function to estimate leaf node values and avoid full simulations during MCTS. For the Mixed track competition, in which the identity of the other players is unknown, a simple Bayesian opponent model is used that is updated as each game proceeds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset