Rate-Splitting Multiple Access in Multi-cell Dense Networks: A Stochastic Geometry Approach
In this paper, the potential benefits of applying the Rate-Splitting Multiple Access (RSMA) in multi-cell dense networks are explored. Using tools of stochastic geometry, the sum-rate of RSMA-enhanced multi-cell dense networks is evaluated mathematically based on a Moment Generating Function (MGF) based framework to prove that RSMA is a general and powerful strategy for multi-antenna downlink systems. Further elaboration of the systematic performance metrics is undertaken by developing analytical expressions for area spectral efficiency and sum-rate in the RSMA-enhanced multi-cell dense networks. Based on the tractable expressions, we then offer an optimization framework for energy efficiency in terms of the number of antennas. Additionally, simulation results are shown to verify the accuracy of our analytical results and provide some insightful insights into system design. Analytically, it has been shown that: 1) the sum-rate of RSMA-enhanced multi-cell dense networks is significantly influenced by the power splitting ratio, and there is a unique value that maximizes the sum-rate; 2) the RSMA-enhanced multi-cell dense networks transmission scheme has superior sum-rate performance compared with Non-Orthogonal Multiple Access (NOMA) and Space-Division Multiple Access (SDMA) in a wide range of power splitting ratio; 3) By increasing the number of antennas and BS density in an RSMA-enhanced multi-cell dense network, the area spectral efficiency can be substantially enhanced; 4) As for energy efficiency, there exists an optimal antenna number for maximizing this performance metric.
READ FULL TEXT