Rate-Optimal Cluster-Randomized Designs for Spatial Interference

11/08/2021
by   Michael P. Leung, et al.
0

We consider a potential outcomes model in which interference may be present between any two units but the extent of interference diminishes with spatial distance. The causal estimand is the global average treatment effect, which compares counterfactual outcomes when all units are treated to outcomes when none are. We study a class of designs in which space is partitioned into clusters that are randomized into treatment and control. For each design, we estimate the treatment effect using a Horovitz-Thompson estimator that compares the average outcomes of units with all neighbors treated to units with no neighbors treated, where the neighborhood radius is of the same order as the cluster size dictated by the design. We derive the estimator's rate of convergence as a function of the design and degree of interference and use this to obtain estimator-design pairs in this class that achieve near-optimal rates of convergence under relatively minimal assumptions on interference. We prove that the estimators are asymptotically normal and provide a variance estimator. Finally, we discuss practical implementation of the designs by partitioning space using clustering algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset