RARTS: a Relaxed Architecture Search Method

08/10/2020
by   Fanghui Xue, et al.
0

Differentiable architecture search (DARTS) is an effective method for data-driven neural network design based on solving a bilevel optimization problem. In this paper, we formulate a single level alternative and a relaxed architecture search (RARTS) method that utilizes training and validation datasets in architecture learning without involving mixed second derivatives of the corresponding loss functions. Through weight/architecture variable splitting and Gauss-Seidel iterations, the core algorithm outperforms DARTS significantly in accuracy and search efficiency, as shown in both a solvable model and CIFAR-10 based architecture search. Our model continues to out-perform DARTS upon transfer to ImageNet and is on par with recent variants of DARTS even though our innovation is purely on the training algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset