RankPose: Learning Generalised Feature with Rank Supervision for Head Pose Estimation

05/22/2020
by   Donggen Dai, et al.
0

We address the challenging problem of RGB image-based head pose estimation. We first reformulate head pose representation learning to constrain it to a bounded space. Head pose represented as vector projection or vector angles shows helpful to improving performance. Further, a ranking loss combined with MSE regression loss is proposed. The ranking loss supervises a neural network with paired samples of the same person and penalises incorrect ordering of pose prediction. Analysis on this new loss function suggests it contributes to a better local feature extractor, where features are generalised to Abstract Landmarks which are pose-related features instead of pose-irrelevant information such as identity, age, and lighting. Extensive experiments show that our method significantly outperforms the current state-of-the-art schemes on public datasets: AFLW2000 and BIWI. Our model achieves significant improvements over previous SOTA MAE on AFLW2000 and BIWI from 4.50 to 3.66 and from 4.0 to 3.71 respectively. Source code will be made available at: https://github.com/seathiefwang/RankHeadPose.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset