Rank Minimization over Finite Fields: Fundamental Limits and Coding-Theoretic Interpretations

04/21/2011
by   Vincent Y. F. Tan, et al.
0

This paper establishes information-theoretic limits in estimating a finite field low-rank matrix given random linear measurements of it. These linear measurements are obtained by taking inner products of the low-rank matrix with random sensing matrices. Necessary and sufficient conditions on the number of measurements required are provided. It is shown that these conditions are sharp and the minimum-rank decoder is asymptotically optimal. The reliability function of this decoder is also derived by appealing to de Caen's lower bound on the probability of a union. The sufficient condition also holds when the sensing matrices are sparse - a scenario that may be amenable to efficient decoding. More precisely, it is shown that if the n× n-sensing matrices contain, on average, Ω(nlog n) entries, the number of measurements required is the same as that when the sensing matrices are dense and contain entries drawn uniformly at random from the field. Analogies are drawn between the above results and rank-metric codes in the coding theory literature. In fact, we are also strongly motivated by understanding when minimum rank distance decoding of random rank-metric codes succeeds. To this end, we derive distance properties of equiprobable and sparse rank-metric codes. These distance properties provide a precise geometric interpretation of the fact that the sparse ensemble requires as few measurements as the dense one. Finally, we provide a non-exhaustive procedure to search for the unknown low-rank matrix.

READ FULL TEXT
research
12/28/2021

The full rank condition for sparse random matrices

We derive a sufficient condition for a sparse random matrix with given n...
research
04/15/2016

Low-Rank Matrix Recovery using Gabidulin Codes in Characteristic Zero

We present a new approach on low-rank matrix recovery (LRMR) based on Ga...
research
03/13/2023

An Improved Sample Complexity for Rank-1 Matrix Sensing

Matrix sensing is a problem in signal processing and machine learning th...
research
03/06/2020

An analysis of noise folding for low-rank matrix recovery

Previous work regarding low-rank matrix recovery has concentrated on the...
research
10/12/2020

The Decoding Success Probability of Sparse Random Linear Network Coding for Multicast

Reliable and low latency multicast communication is important for future...
research
06/16/2020

Dense and Sparse Coding: Theory and Architectures

The sparse representation model has been successfully utilized in a numb...
research
03/07/2023

Completion of Matrices with Low Description Complexity

We propose a theory for matrix completion that goes beyond the low-rank ...

Please sign up or login with your details

Forgot password? Click here to reset