RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation

by   Zhidong Liang, et al.

We present RangeRCNN, a novel and effective 3D object detection framework based on the range image representation. Most existing 3D object detection methods are either voxel-based or point-based. Though several optimizations have been introduced to ease the sparsity issue and speed up the running time, the two representations are still computationally inefficient. Compared to these two representations, the range image representation is dense and compact which can exploit the powerful 2D convolution and avoid the uncertain receptive field caused by the sparsity issue. Even so, the range image representation is not preferred in 3D object detection due to the scale variation and occlusion. In this paper, we utilize the dilated residual block to better adapt different object scales and obtain a more flexible receptive field on range image. Considering the scale variation and occlusion of the range image, we propose the RV-PV-BEV (Range View to Point View to Bird's Eye View) module to transfer the feature from the range view to the bird's eye view. The anchor is defined in the BEV space which avoids the scale variation and occlusion. Both RV and BEV cannot provide enough information for height estimation, so we propose a two-stage RCNN for better 3D detection performance. The point view aforementioned does not only serve as a bridge from RV to BEV but also provides pointwise features for RCNN. Extensive experiments show that the proposed RangeRCNN achieves state-of-the-art performance on the KITTI 3D object detection dataset. We prove that the range image based methods can be effective on the KITTI dataset which provides more possibilities for real-time 3D object detection.


page 1

page 2

page 3

page 4

page 5


Redemption from Range-view for Accurate 3D Object Detection

Most recent approaches for 3D object detection predominantly rely on poi...

CVFNet: Real-time 3D Object Detection by Learning Cross View Features

In recent years 3D object detection from LiDAR point clouds has made gre...

RangeDet:In Defense of Range View for LiDAR-based 3D Object Detection

In this paper, we propose an anchor-free single-stage LiDAR-based 3D obj...

Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection

This paper presents a novel 3D object detection framework that processes...

M3DSSD: Monocular 3D Single Stage Object Detector

In this paper, we propose a Monocular 3D Single Stage object Detector (M...

LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving

In this paper, we present LaserNet, a computationally efficient method f...

Sparse PointPillars: Exploiting Sparsity in Birds-Eye-View Object Detection

Bird's Eye View (BEV) is a popular representation for processing 3D poin...

Please sign up or login with your details

Forgot password? Click here to reset