Randomized block Gram-Schmidt process for solution of linear systems and eigenvalue problems

11/29/2021
by   Oleg Balabanov, et al.
0

We propose a block version of the randomized Gram-Schmidt process for computing a QR factorization of a matrix. Our algorithm inherits the major properties of its single-vector analogue from [Balabanov and Grigori, 2020] such as higher efficiency than the classical Gram-Schmidt algorithm and stability of the modified Gram-Schmidt algorithm, which can be refined even further by using multi-precision arithmetic. As in [Balabanov and Grigori, 2020], our algorithm has an advantage of performing standard high-dimensional operations, that define the overall computational cost, with a unit roundoff independent of the dominant dimension of the matrix. This unique feature makes the methodology especially useful for large-scale problems computed on low-precision arithmetic architectures. Block algorithms are advantageous in terms of performance as they are mainly based on cache-friendly matrix-wise operations, and can reduce communication cost in high-performance computing. The block Gram-Schmidt orthogonalization is the key element in the block Arnoldi procedure for the construction of Krylov basis, which in its turn is used in GMRES and Rayleigh-Ritz methods for the solution of linear systems and clustered eigenvalue problems. In this article, we develop randomized versions of these methods, based on the proposed randomized Gram-Schmidt algorithm, and validate them on nontrivial numerical examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro