Random Walk Sampling for Big Data over Networks
It has been shown recently that graph signals with small total variation can be accurately recovered from only few samples if the sampling set satisfies a certain condition, referred to as the network nullspace property. Based on this recovery condition, we propose a sampling strategy for smooth graph signals based on random walks. Numerical experiments demonstrate the effectiveness of this approach for graph signals obtained from a synthetic random graph model as well as a real-world dataset.
READ FULL TEXT